If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4x-9=49
We move all terms to the left:
x^2-4x-9-(49)=0
We add all the numbers together, and all the variables
x^2-4x-58=0
a = 1; b = -4; c = -58;
Δ = b2-4ac
Δ = -42-4·1·(-58)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{62}}{2*1}=\frac{4-2\sqrt{62}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{62}}{2*1}=\frac{4+2\sqrt{62}}{2} $
| 24=8(-7b+7)-4(b-7) | | 24=8(-7b+7)-4(b-7)) | | 8(x-1)=-10+6x | | 8(k+13)=-112 | | (X-2)(x-2)-(x+1)(x-1)=5 | | (X-2)2-(x+1)(x-1)=5 | | 10x-7=13x | | 6n-24=3(8n-2) | | 5n+7(8n+2)=441 | | 3x-45=1425 | | 15k=-15 | | 5b^2+17b-21=0 | | 6x-21=2x+32 | | -28=k-12 | | 82+18+20=2y | | -25=a-8 | | 36+(2x+6)+(180+(4x-18))=180 | | 14k=-154 | | 6x=1−(4−6x) | | -23=k-14 | | v-12=-10 | | p-18=-26 | | -20p=-340 | | 0=x^2-6x-528 | | 2.4+2x=7.5(2.4-x) | | 2.4x+2x=7.5(2.4-x) | | 40-p=0 | | 3a+13=4a | | 3/5p+1/5=0 | | x+2x+2x+2x+2x=180 | | 10n+.3=0.1+0.3 | | x+35+3x+25=180 |